Manuscripta Mathematica a Quadratic Field Which Is Euclidean but Not Norm-euclidean
نویسنده
چکیده
The classification of rings of algebraic integers which are Euclidean (not necessarily for the norm function) is a major unsolved problem. Assuming the Generalized Riemann Hypothesis, Weinberger [7] showed in 1973 that for algebraic number fields containing infinitely many units the ring of integers R is a Euclidean domain if and only if it is a principal ideal domain. Since there are principal ideal domains which are not norm-Euclidean, there should exist examples of rings of algebraic integers which are Euclidean but not norm-Euclidean. In this paper, we give the first example for quadratic fields, the ring of integers of
منابع مشابه
Non-Galois cubic fields which are Euclidean but not norm-Euclidean
Weinberger in 1973 has shown that under the Generalized Riemann Hypothesis for Dedekind zeta functions, an algebraic number field with infinite unit group is Euclidean if and only if it is a principal ideal domain. Using a method recently introduced by us, we give two examples of cubic fields which are Euclidean but not norm–Euclidean. Let R be the ring of integers of an algebraic number field ...
متن کاملOn the Quaternionic Curves in the Semi-Euclidean Space E_4_2
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملEuclidean Ideals in Quadratic
— We classify all quadratic imaginary number fields that have a Euclidean ideal class. There are seven of them, they are of class number at most two, and in each case the unique class that generates the class-group is moreover norm-Euclidean.
متن کاملLower bounds for decision problems in imaginary, norm-Euclidean quadratic integer rings
We prove lower bounds for the complexity of deciding several relations in imaginary, normEuclidean quadratic integer rings, where computations are assumed to be relative to a basis of piecewise-linear operations. In particular, we establish lower bounds for deciding coprimality in these rings, which yield lower bounds for gcd computations. In each imaginary, norm-Euclidean quadratic integer rin...
متن کامل